Let (a_n) be a bounded sequence of real numbers. Let us remind the notations

 $R_n := \{a_k : k \ge n\}, \quad s_n := \sup R_n, \quad m_n := \inf R_n.$

Let us also recall the following definition:

Definition. Limit superior of (a_n) is defined as

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} s_n = \inf s_n.$$

Limit inferior of (a_n) is defined as

$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} m_n = \sup m_n.$$

Theorem. A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof. (\Rightarrow) Let $a = \lim_{n \to \infty} a_n$. Fix $\varepsilon > 0$. Then $\exists N$ such that $n \ge N \implies |a_n - a| < \varepsilon/2$. Take $m, n \ge N$. Then

$$|a_m - a_n| \ge |a_m - a| + |a_n - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

(\Leftarrow) Assume that (a_n) is a Cauchy sequence and fix $\varepsilon > 0$. Then one can find N so that $m, n \ge N \implies |a_m - a_n| < \varepsilon/2$. In particular, if $m \ge n, a_N - \varepsilon/2 < a_m < a_N + \varepsilon/2$.

Thus $a_N + \varepsilon/2$ is an upper bound for R_N , and $a_N - \varepsilon/2$ is a lower bound for R_N . Thus

$$a_N - \varepsilon/2 \le \inf R_N = m_N \le s_N = \sup R_N \le a_N + \varepsilon/2.$$

Thus

$$\limsup_{n \to \infty} a_n - \liminf_{n \to \infty} a_n \le a_N + \varepsilon/2 - (a_N - \varepsilon/2) = \varepsilon.$$

Since this is true for any $\varepsilon > 0$,

$$\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n.$$

Thus (a_n) converges.